
Finite Block Length Coding for Low-latency

High-Reliability Wireless Communication

Leah Dickstein

˚
, Vasuki Narasimha Swamy

˚
, Gireeja Ranade

:
, Anant Sahai

˚
˚

University of California, Berkeley, CA, USA

:
Microsoft Research, Redmond, WA, USA

Abstract—This paper takes a step towards making practical
cooperative protocols for wireless low-latency high-reliability
communication. We consider the effect of finite block-length
error correction codes and the main message is that the
demands on the error-correcting code are different in different
phases of a diversity-seeking cooperative protocol: In the first
hop where messages must reach potential relays, the code only
has to achieve a moderate probability of error. The final hop
from relays to the destination is where the code must be
ultrareliable. The results are illustrated in the context of a
simple concatenated Hamming+Reed Solomon code.

I. INTRODUCTION

In [1], we introduced a wireless protocol framework that

harvests diversity needed for high reliability by employ-

ing cooperative communication. Cooperating nodes relay

messages simultaneously using a space-time code so that

spatial diversity is harvested while meeting low latency

requirements. In [2], this protocol framework was extended to

include network coding that exploits the bi-directional traffic

(both uplink and downlink) and channel reciprocity. Both of

those works ignored the effects of realistic error-correcting

codes — instead assuming the existence of perfect capacity-

achieving codes.

In this paper, we analyze the effect of finite-block-length

codes on such cooperative communication schemes. Our

naive guess would be that we simply must add the error-

correcting code’s gap-to-capacity at the desired probability

of error to the transmit SNR predicted by using a perfect

capacity-achieving code. The main finding of this paper is

that this naive guess is too conservative. We can do a few

dB better.

The main insight is that the demands on the error-

correcting code are different in different phases. In the initial

phases of the cooperative protocols proposed in [1], [2], the

key is to recruit as many relays as possible and for this,

the error-correcting code does not have to be ultrareliable.

Moderate reliability is fine. However, when the messages

are finally delivered to their ultimate destination, there is no

diversity with respect to the additive noise and it is vital that

the error-correcting code be ultrareliable. Because multiple

relays were very likely to have been recruited earlier in the

protocol, there is less of a fear of simultaneous deep fades.

The main challenge we encounter while analyzing such

protocols is the computational complexity of actually eval-

uating what SNRs would suffice. Since we want very high

reliability (10

´9
), simulations would take far too long. Nu-

merical integration could be used, but there is a curse of

dimensionality since the number of independent fades grows

quadratically with the number of nodes in the network. In

Section III, this paper presents a simpler way of analyzing

the impact of finite-block-length codes in cooperative com-

munication before showing numerical results in Section IV.

II. BACKGROUND

A useful comm-theoretic perspective is to decompose the

required SNR into three parts: (1) capacity: how much does

the rate fundamentally require? (2) gap-to-capacity: given the

target reliability and the specific code being used, how many

extra dB do we need beyond capacity? (3) fading-margin:

how many dB do we need to absorb bad wireless fades?

Although it is useful to be able to think about these

separately, they clearly interact with each other at the system

level. For example, if overall “goodput” is what is desired

and the higher layers will use ARQ to achieve high reliability,

then lowering the target reliability on a link comes at the cost

of more retransmissions and hence less overall rate. In [3]

the authors propose that links which fail about 10% of the

time (allowing more aggressive code rates) result in the best

goodput. A similar finding is reported in [4] from a channel

dispersion perspective. The core question in this paper is

whether a similar story holds when we have a diversity-

oriented cooperative communication protocol with a low la-

tency requirement. In this section, we briefly provide pointers

into the relevant background underlying diversity-oriented

cooperative communication, finite block length effects on

performance of error correction codes and the specific low-

latency oriented protocols that we are considering.

A. Cooperative Communication
As discussed in [1], exploiting virtual multiple antennas

are at the heart of cooperative communication [5]–[7]. The

schemes used for cooperation can be broadly divided into:

a) coded-cooperation; b) distributed space-time coding; and

c) delay-diversity approaches. In coded-cooperation relays

decode the message, then re-encode it and transmit a new

helper code word [8]–[14]. Laneman et al. [5] proposed a

simple distributed space-time block coding (DSTBC) scheme

in which each relay transmits a different column of the space-

time block code (STBC) matrix. A randomized strategy

was addressed in [15] where each relay node transmits an



independent random linear combination of the codewords

that would have been transmitted by all the elements of a

multi-antenna system thus eliminating the need for a cen-

tralized code (or antenna) allocation procedure. Meanwhile,

works like [16], [17] employ a flooding strategy where relays

repeat the signal effectively acting as active scatterers —

effectively increasing the number of taps in the channel and

creating guaranteed delay-diversity. All these strategies rely

very crucially on the design of good error correction codes.

B. Finite-Block-Length Coding
Most of the theoretical results about cooperative commu-

nication assume infinite blocklength codes. However finite

block-lengths matter [4], [18]. In the wireless context, the

impact on the diversity multiplexing tradeoff was studied in

[19], [20], the effect of outdated CSI was studied in [21], the

effects of queue constrains were studied in [22], and effect

of coherence time on diversity was studied in [23]. There

are other notable works which have focussed on interesting

aspects of finite block length coding [24]–[29]. The recent

paper [30] looked at a very similar problem involving the

effects of finite-block-length codes as well as CSI estimation-

overhead in the context of low-latency applications and

presented simulation results where the finding was that

the average PER increases in the number of participating

terminals unless the terminals also act as potential relays.

C. Our Low-Latency Protocols: Occupy CoW and XOR-
CoW

As in [1], [2], the context in which our protocols exist

was adapted from the actual communications requirements

for a control system for an industrial printer that uses a

wired network to achieve the required performance [31]. We

consider a network with a central controller (C) that wishes

to send and receive separate messages to and from each node

in a set of n nodes, denoted by the set N (see Fig. 1). Distinct

messages (for our plots here each of size m “ 160bits,

i.e. 20B) flow in a star topology from the central controller

to individual nodes, and in the reverse direction from the

nodes to the controller within a “cycle” of length T (here

T
c

“ 2ms). This cycle of communication must be achieved

with a very small outage probability P
e

(on the order of

10

´9
). To imagine a wireless drop-in protocol, we set the

available bandwidth to be 20MHz (the size of a standard

WiFi channel) for our plots. We assume that all channels are

independently Rayleigh faded.

C

S0 S1 S2

S3 S5 S4

Fig. 1: Topology schematic for the protocols.

1) Occupy CoW: The Occupy CoW protocol (which we

abbreviate as the CoW-protocol) uses multi-user diversity

to overcome bad fading events. The basic idea is to use a

flooding strategy where the controller broadcasts a packet

that includes messages for all nodes. As this is a broadcast

message, the intended set of recipients are all nodes. Nodes

with good channels act as relays for other nodes. Details of

the protocol are discussed in [1]. In this work we consider

a fixed schedule 2-hop variant of the protocol. The path to

any node from the controller is restricted to 2-hops and all

nodes get two shots are succeeding irrespective of whether

they’ve already succeeded in the first trial. The time available

T
c

is divided for 4 phases namely downlink phase 1 (T
D1 ),

uplink phase 1 (T
U1 ), downlink phase 2 (T

D2 ) and uplink

phase 2 (T
U2 ) such that T

D1 ` T
U1 ` T

D2 ` T
U2 “ T

c

.

In downlink phase 1, the controller puts the messages it

has for each node into a single packet and broadcasts it.

This is followed by uplink phase 1 where the nodes transmit

their uplink information in a time divided fashion such that

each node gets T
U1{n time to transmit its message. This

is followed by downlink phase 2 where all nodes that have

successfully decoded the controller’s message simultaneously

broadcast the entire message using a space-time code. Uplink

phase 2 is similar except that the individual messages are

being sent to the controller and the time slot for each node’s

message/repetition is T
U2{n long.

2) XOR-CoW: The XOR-CoW protocol [2] (which we

abbreviate as the XOR-protocol) follows the same key ideas

as the CoW-protocol described above, except that it also uses

network coding inspired by works such as [32], [33]. The

protocol increases efficiency by dividing the cycle length into

only three phases. The first downlink phase and the second

uplink phase follow the same broadcast ideas as the previous

protocol. In the third “XOR” phase, strong nodes that have

both uplink and downlink messages for other nodes broadcast

the XOR of the two messages associated with each individual

node being helped, thus simultaneously serving as an uplink

relay for the controller and as a downlink relay for that node.

In both the XOR-protocol and the CoW-protocol consid-

ered here, every message effectively gets exactly two chances

to be heard correctly. The first time it is transmitted and then

again when relays simultaneously try to help it get to its

destination. The core question here is how do the realities

of error-correcting codes change what needs to happen in

the protocol and whether there is any difference in how

we use the error correcting code in the first vs the second

transmission.

III. COW WITH FINITE BLOCK LENGTH CODING

A. Idealized analysis of the 2-hop downlink CoW-protocol

Before considering the situation with finite block-length

codes, we first review how the probability of success for

downlink is derived in [1], [2]. The uplink derivations are

similar, albeit a bit more complicated. A note about the

notation: we use caligraphic script to denote sets; the random

variable associated with the size of a set is in upper case and

the instantiation being considered is denoted by lower case.

Denote the set of nodes with direct controller links by

A. Other nodes may connect to the controller through these

nodes in a two-hop fashion. At its essence, our simple



analysis fundamentally examines how the size A of this set

A changes what happens in the second phase. Here, the

transmission rate in the downlink phases is R “ mn

T {4 and

hence the probability of a single link outage due to fading

(assuming Rayleigh fading and a Shannon capacity-achieving

code) is p “ 1 ´ expp´ 2R´1
SNR

q. Then A follows a Binomial

distribution.

Under the ideal conditions that the channels do not change

during a cycle & are reciprocal, the probability of cycle

failure is the probability that at least one of the nodes in

the set N zA does not connect to A. Essentially hearing the

loudest relay is enough as it is not necessary to hear all of

them. Hence, we call this model ‘the loudest talker’ model.

Thus we have:

P pfail|A “ aq “ 1 ´ p1 ´ paqn´a

Thus, the probability of cycle failure is given by:

P pfailq “
n´1ÿ

a“0

P pA “ aq ¨ P pfail|A “ aq (1)

“
n´1ÿ

a“0

ˆˆ
n

a

˙
p1 ´ pqapn´a

˙ `
1 ´ p1 ´ paqn´a

˘

(2)

B. Effect of additive noise at receivers
Practical receivers introduce some sort of additive noise

to the signal. To guard against this, we use error correction

codes. The descriptions of the noise models, modulation

schemes, etc. can be found in [34]. For this paper, the main

quantity of interest is the probability of incorrect decoding

denoted by FSpr
P

q where S is the coding scheme under

consideration (including the block length) and r
P

is the

power received at the receiver.

C. Loudest talker analysis
The challenge here is a curse of dimensionality — we want

to be able to say something interesting when there are tens

of nodes in the system. We call our approach the “loudest

talker model” and analyze downlink, uplink and XOR-CoW

protocols using this approach.

1) Downlink: Let the coding scheme used be S and the

rate of coding is given by R “ mn

T {4 where m is the message

size and n is the number of nodes in the network. If the

instantaneous fade from the controller to a node i was h
i

,

then the probability of declaring a decoding error is given

by

P perror|h
i

q “ FSp|h
i

|2SNRq. (3)

The fade h
i

is Rayleigh faded so the probability of declaring

a decoding error (or the probability of a link failing in

downlink phase 1) is given by

P psingleq “
ª 8

0
P perror|h

i

qf
`
|h

i

|2
˘
d

`
h2

i

˘
(4)

where f
`
|h

i

|2
˘

is the pdf of an exponential random variable.

Let the nodes which succeeded in downlink phase 1 be called

A (with cardinality A). Then probability that A “ a is a

binomial with probability of failure given by Eq. (4) as seen

earlier. We now consider a node (say j) that hasn’t heard its

downlink message from the controller. In downlink phase 2,

the relays A will simultaneously broadcast the packet and

the node j can only reap the benefits of the loudest link.

Let the random variable associated with the channel fade of

the loudest link from A to node Y be denoted by Hmax

a

“
max p|h1,j

|2, |h2,j

|2, . . . , |h
a,j

|2q. The pdf of Hmax

a

(denoted

by fmax

a

ph2q) is given by

fmax

a

ph2q “ ap1 ´ expp´h2qqa´1
expp´h2q

Now the probability of declaring a decoding error at node j in

downlink phase 2 given all the instantaneous fades between

the node j and the relay nodes A is

P perror|h1,j

, . . . h
a,j

q “ FS

´
phmax

a

pjqq2 SNR
¯

(5)

where hmax

a

pjq “ max p|h1,j

|, . . . |h
a,j

|q. Thus the proba-

bility of declaring a decoding error in downlink phase 2 is

given by

P ploudest|A “ aq “
ª 8

0
P perror|h1,j

, . . . h
a,j

qfmax

a

ph2qdh2

(6)

Thus, the probability of failure for 2-hop downlink under

the loudest talker model is given by

P pfailq “
nÿ

a“0

P pA “ aq
`
1 ´ p1 ´ P pec|A “ aqqn´a

˘

“
nÿ

a“0

"ˆ
n

a

˙
p1 ´ P psingleqqaP psingleqn´a

*

ˆ
 
1 ´ p1 ´ P ploudest|A “ aqqn´a

(
(7)

This style of analysis yields an exact and tractable calcu-

lation for downlink reliability. But it doesn’t give insight into

what the dominant effects are and where coding reliability

is required.

We address this by approximating the waterfall curve of

an error-correcting code with a threshold cliff. We consider

that a link is ‘bad’ in two ways a) if the received power is

too low due to fading; or b) the additive noise at the receiver

was too much despite good enough receive power. Let the

transmit power (in dB) be t
P

and the threshold to declare

inadequate receive power (in dB) be r
th

. The probability that

actual received power r
P

is less than r
th

is the probability

of bad fade (denoted by p
fade

). Thus we have,

p
fade

“ P pr
P

† r
th

q “ 1 ´ expp´10

rth´tP
10 q (8)

The probability that additive noise is too high is approxi-

mated by the probability of decoding error when the received

power is r
th

. Thus we get the probability of high additive

noise (denoted by p
add

) under coding scheme S is given by,

p
add

“ FSpr
th

q (9)

This threshold of reliability (p
add

) that divides acceptable

from unacceptable is an internal parameter of the analysis



that can be optimized to get the best overall bound. Thus,

the probability of failure of a link is given by

p
link

“ p
fade

` p1 ´ p
fade

qp
add

. (10)

The combination of looking at the loudest talker (max SNR)

and approximating the waterfall curve with a threshold cliff

enables the analysis to decompose and become scalable with

the number of nodes. We get nested sums, but the number of

nested sums scales with the number of phases of the protocol

rather than the number of nodes. Downlink analysis now

simplifies to:

P pA “ aq “
ˆ

n

a

˙
p1 ´ p

link

qapp
link

qn´a

(11)

Conditioned on the cardinality of A, the probability of

downlink failure is then the probability that at least one of

the remaining n ´ a nodes did not hear the message. Thus

we get,

P pfail|A “ aq “ 1 ´
`
1 ´ pa

fade

´
`
1 ´ pa

fade

˘
p

add

˘
n´a

(12)

Combining Eq. (11) and (12) we get,

P pfailq “
nÿ

a“0

P pA “ aqP pfail|A “ aq (13)

Uplink proceeds similarly, but for reasons of space, we

omit that analysis.

D. XOR-CoW Loudest Talker Analysis
We must analyze the XOR-CoW protocol slightly differ-

ently as the successes in downlink and uplink are coupled.

This coupling makes it impossible to decouple all the inte-

grals representing each of the independent fades — leaving

us with a curse of dimensionality for numerical integration,

which must be in turn be done to high precision to resolve

probabilities of error around 10

´9
. Fortunately, the bounding

approach taken above can be made tractable.

We assume that the transmit power is the same at all nodes

and in all phases. However, we allow the receive power

threshold (implying a different fade tolerance in different

phases) to be different for the downlink-uplink and XOR

phases. For simplicity, we set the thresholds to be the same

for downlink and uplink but demand a higher receive power

for the XOR phase. Essentially, a link with a good fade

in downlink & uplink phases does not imply that the link

has sufficient capacity for the XOR phase. The reason for

setting different thresholds is to capture the importance of the

relaying phase. If a message did not succeed in the first trial

(downlink or uplink phase), then it has only one more chance

to succeed. By requiring the receive power to be higher, we

essentially try to combat the effect of additive noise at the

receiver. This makes sense because the maximum energy in

the loudest talker is indeed higher than it would be for a

single talker. The current analysis is for a set of threshold

and we search over the threshold values that minimizes the

transmit power required. The rates in the different phases are

determined by the block lengths allocated for the phases (T
D

,

T
U

and T
X

), the number of nodes in the network (n) and

Controller

�A
s

�A
i

ˇA
i

ˇA
s

ˇB�B

E

R
D,U

R
D,U

R
D

R
D

R
U

�A ˇA

Fig. 2: The figure shows the different sets and their connec-

tivity to the controller. The interconnection between the sets

needed for success are not shown. The rates annotating the

links are the rates in which the links to the controller are

present. The bold links belong to the superior set which has

links to the controller during the XOR phase.

the payload sizes (m). Thus we get that the downlink, uplink

and XOR rates are R
D

“ m¨n
TD

, R
U

“ m¨n
TU

and R
X

“ m¨n
TX

respectively.

Let the transmit power be t
P

(in dB) and the received

power threshold for downlink and uplink phases be r
DU

and

r
X

(in dB). The probability of having a good fade in the

downlink and uplink phases is then given by

pfade
DU

“ 1 ´ expp´10

rDU ´tP
10 q. (14)

Let padd
D

and padd
U

be the probability of failure due to

additive noise (despite having had enough receive power) in

the downlink and uplink phase respectively. The probabilities

are different because the blocklengths of the messages in

these phases are different. We partition the set of nodes N
(as shown in Fig. 2) into different sets for ease of analysis:

‚ Let the set of nodes which have a good fade to the

controller in the downlink and uplink phase be G. This

set is further divided into disjoint sets

rA,

qA,

rB and

qB
such that G “ rA

î qA
î rB

î qB.

‚ rA is the set of nodes which were successful in both

downlink and uplink phases.

‚ qA is the set of nodes which were successful in downlink

phase only (no uplink).

‚ rB is the set of nodes which were successful in uplink

only (no downlink).

‚ qB is the set of nodes which were not successful in

neither downlink nor uplink.

In order to act as a relay in the XOR phase, a node must
have the downlink information. Hence only nodes in

rA
î qA

can act as relays in the XOR phase. As we have further

restricted the receive power needed to overcome the additive

noise threshold in the XOR phase, only a subset of the nodes

in

rA
î qA can help. Let the subset of the nodes in

rA with

“superior” links to the controller be

rA
s

(the rest form

rA
i

)

and the subset of nodes in

qA with “superior” links to the

controller be

qA
s

(the rest form

qA
i

).



We enumerate the ways in which nodes can succeed.

‚ Nodes in

rA successfully receive their downlink infor-

mation in the downlink phase and successfully transmit

their uplink information in the uplink phase.

‚ Nodes in

qA successfully receive their downlink informa-

tion in the downlink phase. Nodes in

qA
s

successfully

transmit their uplink information if the additive noise

wasn’t too much at the controller during their slot in

the XOR phase. Nodes in

qA
i

don’t have a superior link

to the controller. They can successfully transmit their

uplink information to the controller only if a node in

the set A
s

“ rA
s

î qA
s

successfully heard its uplink

message and the additive noise at the controller during

its slot in the XOR phase wasn’t too much.

‚ Nodes in

rB successfully transmit their uplink informa-

tion in the uplink phase. They can successfully receive

their downlink information either directly from the

controller if the controller has a superior link to the

node or if they connect to A “ rA
î qA in both uplink

and XOR phase (thus having a superior link).

‚ Nodes in

qB
îtN zGu succeed by connecting to A

s

in

the uplink phase (to have a path to the controller in the

XOR phase). They succeed in getting their downlink

information by either having a superior link to A
s

in

the XOR phase or by connecting to A
i

“ rA
i

î qA
i

in

uplink as well as XOR phase. Additionally, the additive

noise at both the controller and the node must be low

enough in the XOR phase.

Notation:
In order to effectively present the derived expressions, we

provide a guide to the notation that will be used in the fol-

lowing sections. A binomial distribution with n independent

experiments, probability of success 1 ´ p, and number of

success m will be referred to as

Bpn, m, pq “
ˆ

n

m

˙
p1 ´ pqmpn´m. (15)

Failure is the event that even one of the nodes did not

get its downlink information or wasn’t able to transmit

its uplink information. We will calculate the probability of

failure by unraveling the state space. As mentioned earlier,

the probability of having a bad fade in the downlink and

uplink phases is then given by Eq. (14)

pfade
DU

“ 1 ´ expp´10

rDU ´tP
10 q

where r
DU

is the receive power threshold and t
P

is the

transmit power.

Therefore the probability of G “ g nodes having a

good link to the controller is given by P pG “ gq “
Bpn, g, pfade

DU

q. Conditioned on the event of having G “
g good fade nodes, let us look at the distribution of different

sets

rA,

qA,

rB and

qB.

We denote by A “ rA
î qA the set of nodes that succeed

in downlink. Thus, we get that in addition to having good

links, the additive noise at these receivers were low enough

to allow decoding. The probability of failing due to additive

noise despite having enough receive power in the downlink

phase is padd
D

which depends on the block length and the

coding rate as already discussed earlier. Thus, we get that

the probability that A “ a conditioned on G “ g is given

by P pA “ a|G “ gq “ Bpg, a, padd
D

q.

Out of the nodes in the set A, only the set

rA succeed in

uplink as well. The probability of having low enough additive

noise to enable decoding in the uplink phase is given by

padd
U

. Thus conditioned on G “ g and A “ a, we get that

the probability of

rA “ ra is given by P p rA “ ra|A “ a, G “
gq “ Bpa, ra, padd

U

q. In addition to

rA, the nodes in

rB also

succeed in the uplink phase (though they did not succeed

in the downlink phase). Conditioned on G “ g, A “ a
and

rA “ ra, we get the probability of

rB “ rb is given by

P p rB “ rb|G “ g, A “ a, rA “ raq “ Bpg ´ a,rb, padd
U

q.

We’ll now calculate the probability of the ‘superior’ sets

rA
s

and

qA
s

. We already know that the fades between the

nodes in the set A and the controller has a minimum receiver

power of r
DU

. In the XOR phase, the receiver power required

is r
X

• r
DU

. Conditioned on the links being good enough

for the downlink and uplink phases, the probability that they

are not good enough for the XOR phase is given by

p
XDU

“ P plink not good for XOR|link good for DUq
“ 1 ´ expp10

rDU ´tP
10 ´ 10

rX´tP
10 q

(16)

Therefore, we get the probability of

rA
s

“ ra
s

and

qA
s

“
qa

s

conditioned on

rA “ ra and

rA “ ra is given by

P p rA
s

“ ra
s

, qA
s

“ qa
s

| rA “ ra, qA “ qaq “ Bpra, ra
s

, p
XDU

q ¨
Bpqa, qa

s

, p
XDU

q.

We now calculate the probability of success of each set

in the XOR phase. Set

rA has already succeeded in the

downlink and uplink phases, so their probability of success

is 1. Therefore

P
´

success of

rA
¯

“ 1.

The next set under consideration is

qA
s

which succeeds as

long as the additive noise at the controller was low enough in

the XOR phase (this happens with probability padd
X

which

depends on the block length, coding rate and r
X

). Therefore

P
´

success of

qA
s

¯
“ p1 ´ padd

X

qqas .

The next set under consideration is

qA
i

which succeeds if

the nodes have a connection to A
s

in the uplink phase and

the additive noise at the controller was low enough in the

XOR phase. Therefore

P
´

success of

qA
i

¯
“ pp1 ´ pp

U

qasqp1 ´ padd
X

qqqai

where p
U

“ pfade
DU

` p1 ´ pfade
DU

qpadd
U

.

Consider the set

rB which succeeds if they have a ‘superior’

link to the controller (with probabiluty 1 ´ p
XDU

) or they

connect to A in uplink phase and have a superior link to the

set in the XOR phase. Let the probability of success for a

node (before considering the effect of thermal noise at the

receiver) in

rB be q rB. Then we have

q rB “
˜

1 ´ p
XDU

` p
XDU

˜
aÿ

k“1

p1 ´ p
U

qkpa´k

U

p1 ´ pk

XDU

q
¸¸



where p
U

“ pfade
DU

` p1 ´ pfade
DU

qpadd
U

. Thus we

have

P
´

success of

rB
¯

“
`
q rBp1 ´ p

XDU

q
˘
b̃

.

Lets consider the nodes in N zG and

qB. They succeed in

transmitting their uplink information by connecting to A
s

in

the uplink phase (to have a path to the controller in the XOR

phase). They succeed in getting their downlink information

by either having a superior link to A
s

in the XOR phase or

by connecting to A
i

“ rA
i

î qA
i

in uplink as well as XOR

phase. We calculate the probability of not getting a path to

success f
e

(not counting thermal noise).

f
e

“ pas
U

`
# «

asÿ

ks“1

´
Bpa

s

, k
s

, p
U

qpks
XDU

¯�
ˆ

ˆ
«

aiÿ

ki“0

´
Bpa

i

, k
i

, p
U

qpki
XDU

¯�+
(17)

where a
s

“ ã
s

` ǎ
s

and a
i

“ ã
i

` ǎ
i

. Thus we get

P pfail of node in elseq “ f
e

`p1 ´ f
e

q
`
1 ´ p1 ´ padd

X

q2
˘
.

P psuccess of elseq “ p1 ´ P pfail of node in elseqqn´g`q
b.

Combining the success equations above we get,

P psuccess|statesq “ P psuccess of elseq ¨ P
´

success of

rB
¯

¨ P
´

success of

qA
i

¯
P

´
success of

qA
s

¯
.

(18)

Finally,

P pfailureq “
ÿ

states

P pstatesq ˆ P psuccess|statesq.

where

P pstatesq “ P p rA
s

“ ra
s

, qA
s

“ qa
s

| rA “ ra, qA “ qaq
¨ P p rB “ rb|G “ g, A “ aq ¨ P p ˜A “ ã|A “ aq
¨ P pA “ a|G “ gq ¨ P pG “ gq

(19)

IV. NUMERICAL RESULTS

In this section we present numeric results so that the

relative quality of the bounds can be seen. The individual

node message payload size used for all these plots is 20B,

the latency requirement is 1.5ms and the available bandwidth

is 20MHz. The total blocklength given for each phase is

thus 10000 symbols. Before presenting the results, we briefly

discuss the very simple coding scheme that we consider in

this paper to showcase finite blocklength effects.

Concatenated Hamming+Reed-Solomon code
A short Hamming code is used to fix isolated bit flips

with a Reed-Solomon code wrapper to clean up the rest. In

particular, we consider a p7, 4q code, and each of the 16 “ 2

4

Hamming codewords forms a symbol in the Reed-Solomon

alphabet. When we need a field size of more than 16, we

just group two Hamming codewords together and so up to

256 RS symbols can be obtained by putting two together,

and so on. We then generate RS parity symbols such that

the coding rate is close to R “ mˆn

T {4 for any given m, n and

T . The exact expressions for decoding error FSpSNRq as a

function of the SNR at the receiver can be computed and we

have used the half-minimum-distance decoding expressions

for an underlying BPSK signaling assumption for our plots.

Uncoded

Hamming 
+ R-S

Shannon

Hard Binary 
Shannon

Polyanskiy BSC 
Converse

Dispersion 
Bound

Error
Exponent

Fig. 3: Waterfall curves with a block-length of 333 symbols

per codeword at a coding rate of R “ 0.48.

We begin by looking at the waterfall curves (in Fig. 3)

for various coding techniques for n “ 30 nodes which

corresponds to a coding rate of R “ 30˚160
10000 “ 0.48 at

an ‘uplink’ blocklength of 10000{30 “ 333 symbols per

codeword. As expected, the performance for the simple

concatenated Hamming+Reed-Solomon code is much worse

than the channel dispersion-based bound [4]. We observe

that once in the waterfall region, the block error probability

for the Hamming+Reed-Solomon scheme falls rapidly from

10

´2
to 10

´10
in a matter of 4dB.

We first look solely at the performance of the downlink

2-hop protocol with uplink-like blocklengths. The reason

for considering this particular scenario is because downlink

is the simplest to analyze because of the independence of

the links used in various phases. This allows us to get

a better understanding of various issues that need to be

considered due to ultra-reliability requirement. The uplink

blocklengths are used because they are shorter and hence

more vulnerable to additive noise. In Fig. 4 we consider

the following curves: a) the Shannon code curve which

gives us the lower bound on the power required; b) the

AWGN-dispersion curve derived using the integral model as

described in Eq. (7) in Sec.III; c) the dispersion code curve

for the fade + additive noise model from Eq. (10) with p
add

being set to 10

´10
; d) the concatenated Hamming+Reed-

Solomon code curve using the integral model as described

in Eq. (7); and e) the concatenated Hamming+Reed-Solomon

code curve for the fade + additive noise model from Eq. (10)

with p
add

being set to 10

´10
. We heuristically set p

add

to

10

´10
since the target probability of cycle failure is 10

´9
.

The underlying reason for the gaps in Fig. 4 between the

downlink curve calculated with the full integral (as described

in Eq. (4)) and the one calculated using the p
add

“ 10

´10



Fig. 4: For 2-hop downlink, the SNR required for a perfect

Shannon capacity code versus the SNR required for using

various coding schemes is shown. The reliability is 10

´9
.

10-10 threshold

Intelligent threshold

Actual link error

Fig. 5: Comparison between bounds for a single link failure

using different models for coding rate corresponding to R “
0.48 and blocklength of 1000{3.

threshold bound (described in Eq. (10)) can be seen by

examining Fig. 5. At any transmit SNR, the thresholding

bound significantly overestimates the probability of failure

which translates to an increase in transmit power needed to

achieve the same performance. A third curve is shown that

uses an intelligent search over the value of p
add

to get as

close to the actual value of p
link

as possible.

Fig. 6 shows the transmit SNR required to achieve our

target reliability while using the XOR-CoW protocol. As

explained earlier, the analysis of the XOR-CoW protocol

using the integral approach is computationally intractable and

hence not plotted. However we do plot curves with a) p
add

set to 10

´10
; and b) where we search over p

add

for each

phase. The line corresponding to the Shannon capacity code

gives us a lower bound on the transmit power required. The

dispersion-based line corresponding to the adaptive search

over p
add

gives us a good ballpark lowerbound on how a

‘good’ finite blocklength code can seem to perform using

this style of analysis. The performance of the concatenated

Fig. 6: The SNR required under the assumption of existence

of a Shannon capacity code versus the SNR required for

using a practical code for XOR-CoW protocol. The target

reliability is 10

´9
.

Hamming+Reed-Solomon code is similar to that in Fig. 4.

The close match suggests to us that the downlink integral

curves are indeed essentially the right answers even for the

XOR case.

Padd in Uplink Phase

Padd in XOR Phase

Receiver SNR in 
Uplink Phase

Receiver SNR in 
XOR Phase

Fig. 7: Optimized Receiver SNR thresholds (and the corre-

sponding additive noise error probability) for the XOR-CoW

protocol using the simple Hamming+RS Code.

The more interesting aspect is to look in Fig. 7 at the

receive SNR thresholds that are selected for the XOR phase

vs the downlink/uplink phase when we allow those thresholds

to be optimized. By tolerating a lower receiver power for the

downlink-uplink phases, we allow for a potentially larger

number of relays for the relaying phase even as the resulting

probability of additive noise induced error is higher. More

relays means that we can more easily count on getting higher

receiver power in the XOR phase – thus getting higher

reliability in the relaying phase. This allows for lowering

the transmit power required by around 4dB which agrees



with the number from the waterfall curve at 30 nodes. This

possibility of “partial credit” is why the naive prediction of

simply adding the capacity-gap to the Shannon-style analysis

is too conservative. The error-correcting code in the early

phases is not called upon to hit probabilities of error of 10

´9
.

That is only required at the final phase.

V. CONCLUSIONS AND FUTURE WORK

Works like [4] and [18] tell us that once blocklengths are

short, no code can be perfect. For low-latency communi-

cation, short blocklengths are essential. For ultrareliability,

multiple phases and the prospect of relaying is essential to

harvest the required diversity of fading. The message of this

paper is that in the initial phase, the goal is not ultrareliability

but reaching the maximum number of relays. The code can

therefore be run at a much more moderate error probability

— similar to traditional wireless communication systems that

will use ARQs to achieve reliability. The relaying phase

(in this case the XOR phase) must be made as reliable as

possible as it is the last chance to succeed. This means that

simply adding together the gap-to-capacity to the Shannon

bound is too conservative when thinking about ultrareliable

low-latency wireless communication. We can do significantly

better.
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